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Problem formulation

Setting

* Training data Dy ={(x1,41),-- -, (Xn,yn)}

* Unseen test point (XN+1, Yn41)

* Point prediction yn+1 = f(xXn11;04)
Goal

» construct prediction interval C,, that contains ¥~ +1 with high probability

marginalcoverage P (yn.1 € Co(xni1)) > 11—« given miscoverage rate @ € (0,1)

Desiderata

* Distribution-free (no assumptions on parametric form of data distribution)
« Efficiency ( C should be as tight as possible to be informative as a measure of uncertainty)

* No data-splitting (use all available data for training)



(Full) conformal prediction

Repeat for new test point Xy 11 >
Repeat forevery ¥y € R >

* Postulate target for test input ¥

Dnii1(y) =Dy U{(xni1,y)} Exchangeability assumption

* Fitmodel on Dy+1(y) leadingto 6, (y) Symmetrical algorithm
(test point treated in same way as training data)

& compute residuals
Ri(y) = lyi — f(x;0,(y))] Vi=1,...,N Ry(y) = ly — f(xn41; 07 (y))l

 Compute rank: T(y) = Zf\:{l H{Ri(y)<Rn+1(y)}

el ag) € (W=l D)

if Yes: include v in Co(Xn11) if No: discard ¥ ]




Accelerating conformal prediction

* Split-CP as a special case of Full-CP
» Certain model classes (e.g., ridge', Lasso?, k-NN?3) lead to computational shortcuts
* Approaches based on homotopy continuation techniques* and algorithmic stability®

* Approaches that trade-off validity for efficiency by approximating retraining step from a single
trained modelon Dy ®

Influence function [Jaeckel, 1972; Koh & Liang, 2017]
0. (y) ~ 0, — Hﬂjlvg?\f—H(H*)

Limitation: for regression, need to use a finite grid imposing computation-precision trade-off

This work: adapts [Martinez et al., 2023] for regression by extending conformal ridge regression’

"Nouretdinov et al., 2001 2Lei, 2019 SPapadopoulos et al., 2011 “Ndiaye & Takeuchi, 2019 °Ndiaye, 2022
5Martinez et al., 2023



Approximating FCP via Gauss-Newton influence (ACP-GN)

* Recovers conformal ridge regression as special case unlike [Martinez et al., 2023]

4 )

Newton-step influence [Pregibon, 1981; Beirami et al., 2017]
with Gauss-Newton approximation ("GN-influence”)

€
0+ () ~ 0, + 21y H_ .\ Vo fy.1(6.)

K 1+ hN—I—l /
* Approximate scores by piecewise linear function of postulated label
Ri(y) = lyi — f(x4 60, (y))] Ryi1(y) = ly — f(xn41; 07 (y))]
~ |a; + by ~ |an41 + bvy|

» Obtain exact form of prediction set by applying ridge regression confidence machine
procedure on {(a;, b;)} 2+

m(y) =i H{yeS}t  with Si={y:]a+by| <lanii+byiyl}

TNouretdinov et al., 2001



ACP-GN gains in limited-data regimes

Avg. Width Avg. Coverage
90% 95% 99% 90% 95% 99%
LA 1.690+0.017 2.014+0.020 2.647+0.027 88.73+0.61 (V) 90.78+0.50 (X)  93.89+0.60 (X)
SCP 2.553+0.093 4.001+o0.115 10.018+0.361 89.56+0.66 (v') 94.07+0.39 (v') 99.32+0.08 (v')
yacht CRF 2.526+0.092 3.947+0.115 9.674+0.2914 89.53+0.64 (v') 94.10+0.38 (v') 99.29+0.10 (V")
N=308 CQR 4.090+0.105 5.845+0.187 18.650+0.484 89.94+0.42 (v') 94.4240.32(v") 99.02+0.17 (V)
1=6 ACP-GN 1.594+0.016 2.385+0.029 6.915+0.067 87.36+0.58 (v') 92.56+0.68 (v') 99.03+0.11 (V)
LA 9.398+0.046 11.199+0.055 14.718+0.072 91.2410.31 (V) 94.34+t0.22 (V") 97.53+0.11 (X)
SCP 10.635+0.123 14.509+0.171 36.272+1.847 89.56+0.42 (v') 94.64+032(v) 99.11+0.13 (V)
boston CRF 11.932+0.605 16.073+0.862 40.690+3.333  90.01+0.33 (v') 94.77+0.22 (v') 99.30+0.08 (V')
N=506 CQR 11.692+0.129 15.115+0.213 31.628+1.822  90.10+0.33 (v') 95.12+0.24 (v') 99.07+0.14 (V')
I1=13 ACP-GN 9.1821+0.046 12.111+0.038 20.512+0.057 90.64+0.26 (v') 95.49+0.16 (v') 99.11+0.08 (V')
LA 1.502+0.006 1.790+0.007 2.353+0.009 88.96+0.35 (v') 92.92+0.33 (X) 96.95+0.23 (X)
SCp 1.942+0.032 2.486+0.046 3.772+0.003 89.44+0.28 (v') 94.80+0.20 (v') 99.18+0.08 (V)
energy CRF 1.923+0.031 2.45440.046 3.728+0.092 89.39+0.28 (v') 94.78+0.22 (v') 99.14+0.08 (V')
N=768 CQR 4.670+0.030 5.139+0.029 6.438+0.120 90.08+0.26 (v') 95.24+0.21 (v') 98.96+0.09 (V')
I=8 ACP-GN 1.462+0.006 1.884+0.008 3.076+0.015 88.28+0.33(v") 93.69+0.33 (v") 98.88+0.11 (V)
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