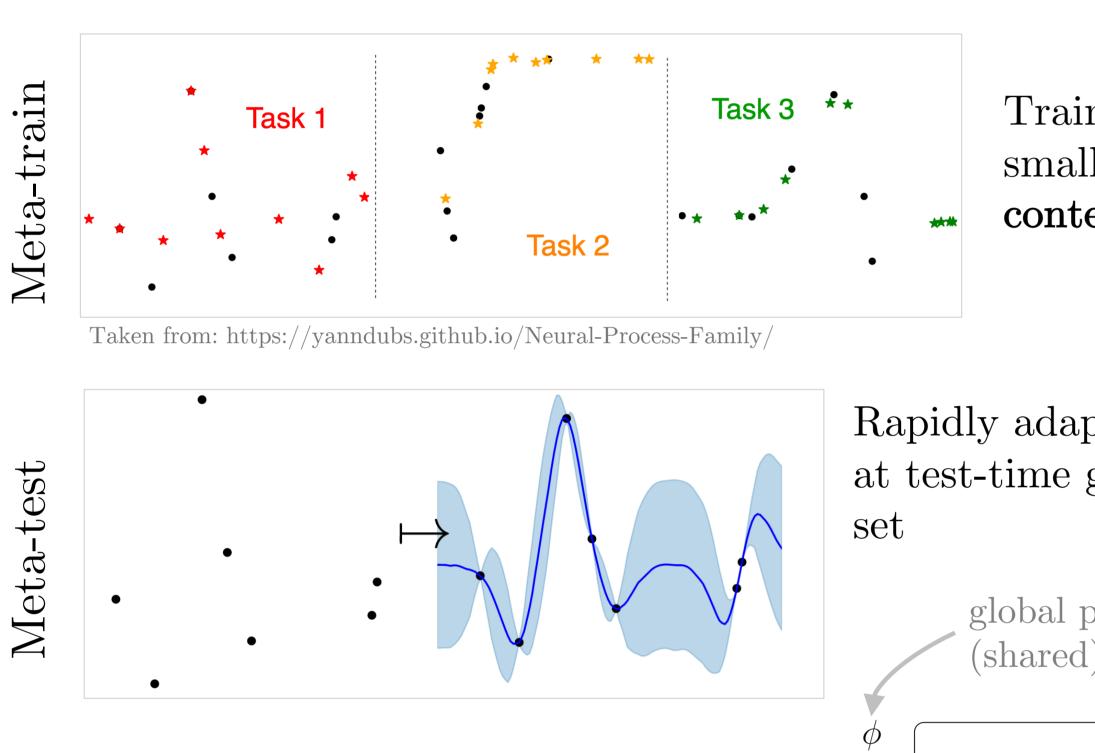


We enrich the latent variable of Neural Processes with structured priors (e.g. with multiple modes, heavy-tails, etc.) and provide a framework that directly translates such distributional assumptions into an aggregation strategy for the context set.

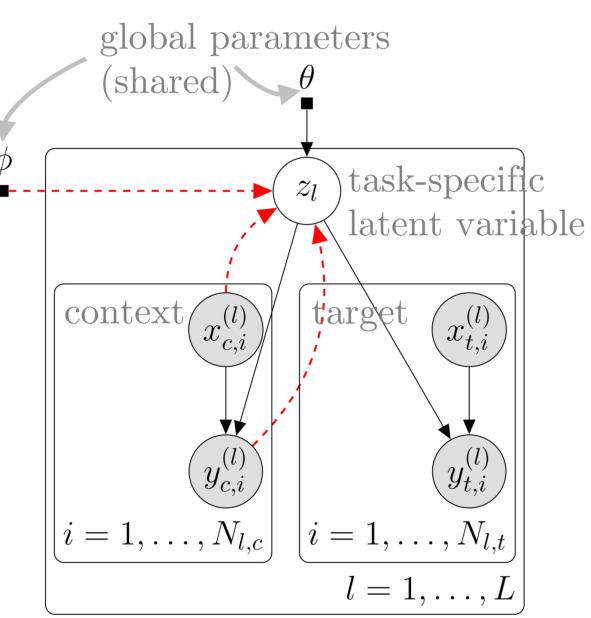
Neural Processes as Meta-Learning Approximate Inference



• Seek to learn an approximate distribution over task-specific variables (via **amortization**) which gives rise to a posterior predictive

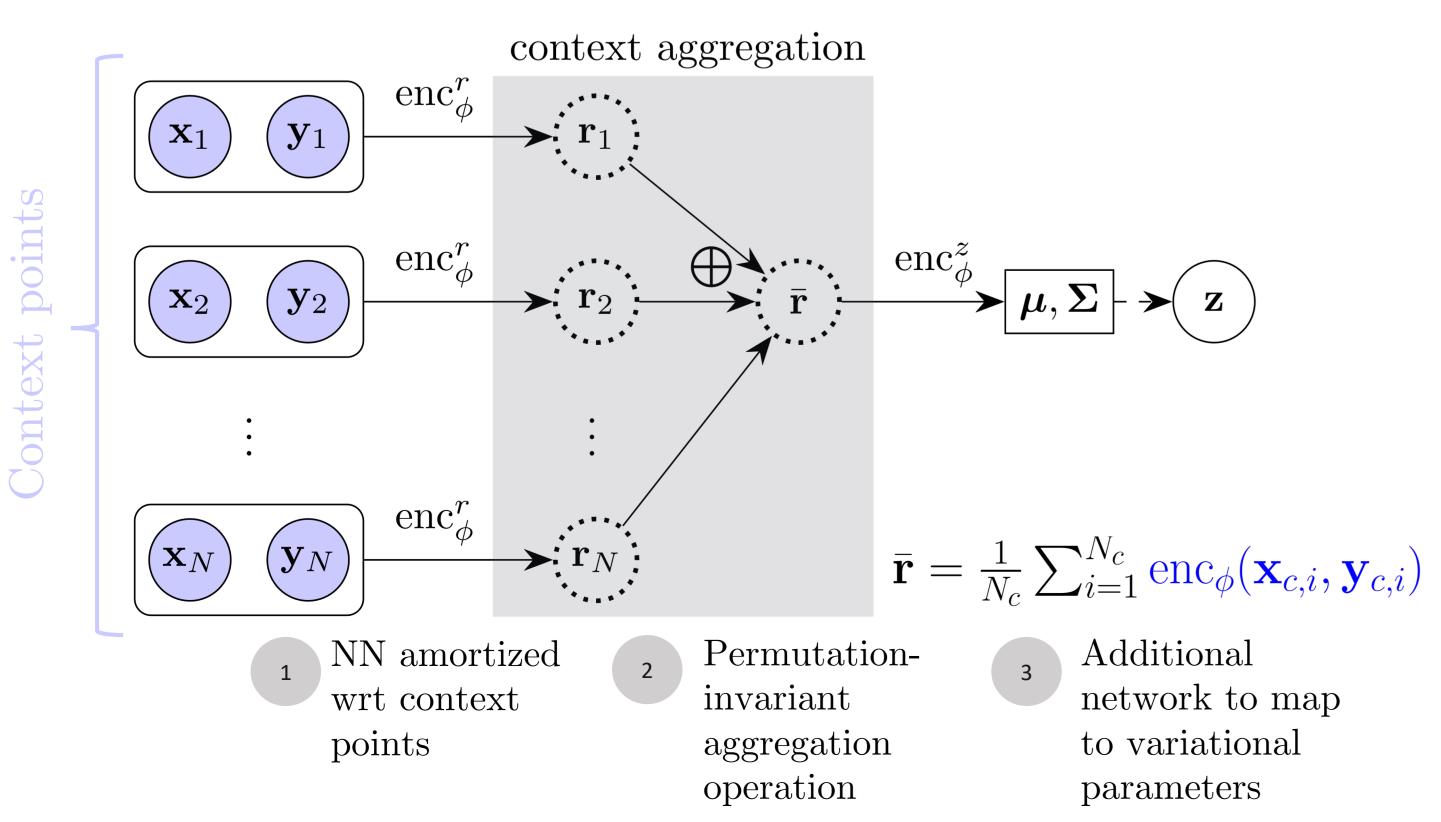
$$\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathcal{D}_{c})} \left[p(\mathbf{y}_{*}|\mathbf{x}_{*}, \mathbf{z}) \right]$$

• Train all parameters end-to-end using lower-bound to conditional marginal likelihood across all tasks.



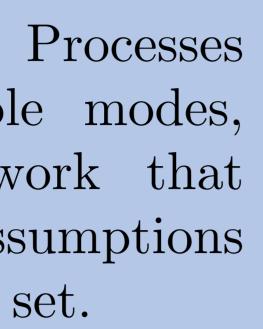
Standard multi-task LVM

Sum-Decomposition Network



Exploiting Inferential Structure in Neural Processes Dharmesh Tailor¹, Emtiyaz Khan², Eric Nalisnick¹

¹University of Amsterdam (Netherlands) ²RIKEN AIP (Japan)

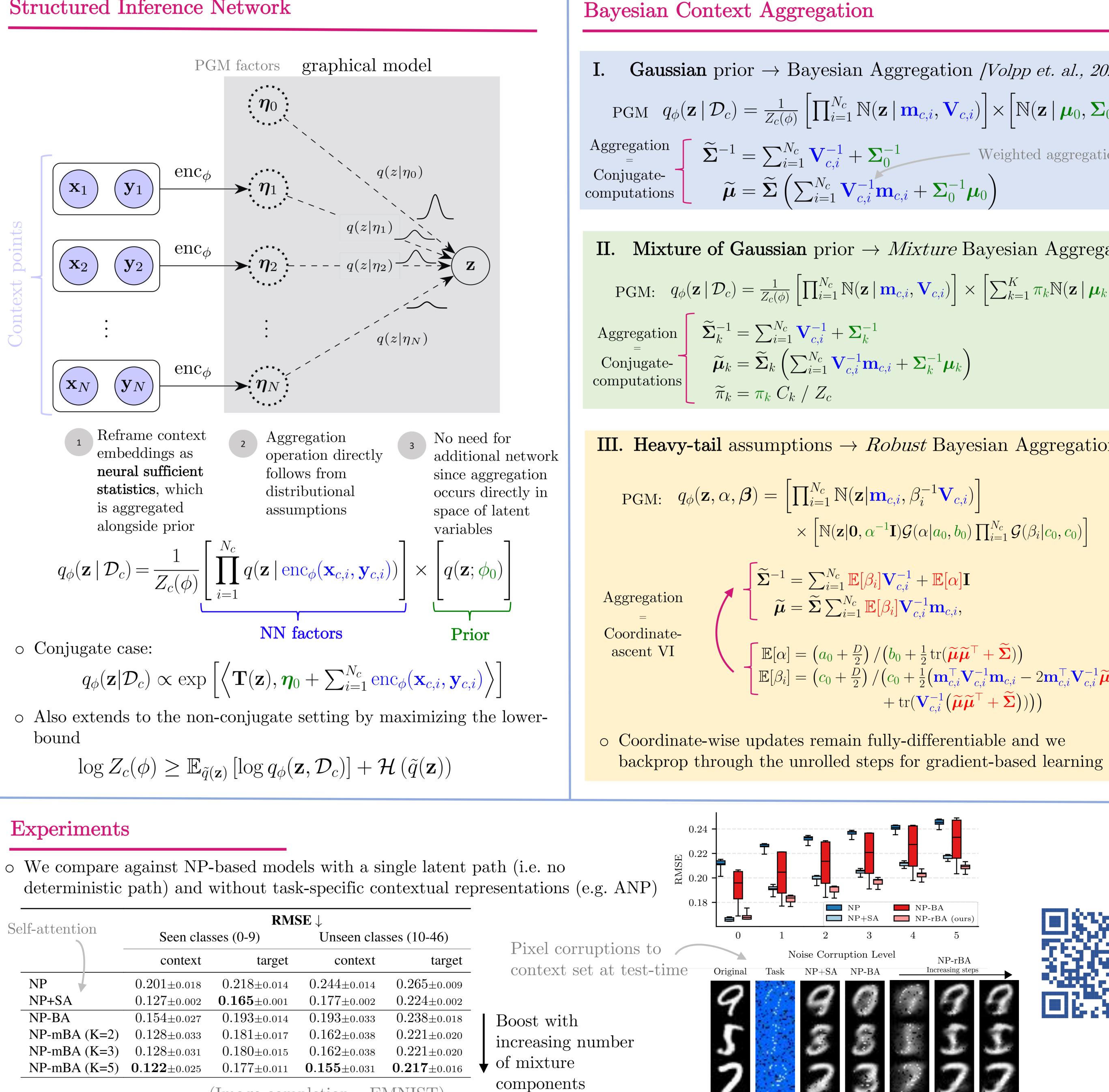


Train on many, small datasets with context-target splits

Rapidly adapt to new tasks at test-time given context

network to map to variational

Structured Inference Network



Solf attention	$\mathbf{RMSE}\downarrow$				
Self-attention	Seen classes (0-9)		Unseen classes (10-46)		
	context	target	context	target	
NP	$0.201 {\pm} 0.018$	$0.218 {\pm} 0.014$	$0.244 {\pm} 0.014$	$0.265{\pm}0.009$	
NP+SA	$0.127{\pm}0.002$	$0.165{\scriptstyle\pm0.001}$	$0.177 {\pm} 0.002$	$0.224 {\pm} 0.002$	
NP-BA	$0.154 {\pm} 0.027$	$0.193 {\pm} 0.014$	$0.193{\scriptstyle \pm 0.033}$	$0.238{\scriptstyle\pm0.018}$	
NP-mBA (K=2)	$0.128 {\pm} 0.033$	$0.181 {\pm} 0.017$	$0.162 {\pm} 0.038$	$0.221 {\pm} 0.020$	
NP-mBA (K=3)	$0.128{\scriptstyle\pm0.031}$	$0.180{\scriptstyle \pm 0.015}$	$0.162 {\pm} 0.038$	$0.221 {\pm} 0.020$	
NP-mBA (K=5)	$0.122{\scriptstyle\pm0.025}$	$0.177 {\pm} 0.011$	$0.155 {\scriptstyle \pm 0.031}$	$\boldsymbol{0.217}{\scriptstyle \pm 0.016}$	
	(Image completion – EMNIST)				

(111050 00111) 101011 111111010 1)



yesian Aggregation [Volpp et. al., 2020]

$$\prod_{i=1}^{N_{c}} \mathbb{N}(\mathbf{z} \mid \mathbf{m}_{c,i}, \mathbf{V}_{c,i})] \times \left[\mathbb{N}(\mathbf{z} \mid \boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}_{0}) \right]$$

$$\mathbf{V}_{c,i}^{-1} + \boldsymbol{\Sigma}_{0}^{-1} \qquad \text{Weighted aggregation}$$

$$\mathbf{V}_{c,i}^{-1} + \boldsymbol{\Sigma}_{0}^{-1} \mathbf{m}_{c,i} + \boldsymbol{\Sigma}_{0}^{-1} \boldsymbol{\mu}_{0} \right)$$
prior $\rightarrow Mixture$ Bayesian Aggregation
$$I_{i=1}^{N_{c}} \mathbb{N}(\mathbf{z} \mid \mathbf{m}_{c,i}, \mathbf{V}_{c,i})] \times \left[\sum_{k=1}^{K} \pi_{k} \mathbb{N}(\mathbf{z} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right]$$

$$\sum_{i=1}^{-1} \mathbb{N}(\mathbf{z} \mid \mathbf{m}_{c,i}, \mathbf{V}_{c,i})] \times \left[\sum_{k=1}^{K} \pi_{k} \mathbb{N}(\mathbf{z} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right]$$

$$\sum_{i=1}^{-1} \mathbf{V}_{c,i}^{-1} \mathbf{m}_{c,i} + \boldsymbol{\Sigma}_{k}^{-1} \boldsymbol{\mu}_{k} \right)$$

$$Z_{c}$$
ons $\rightarrow Robust$ Bayesian Aggregation
$$\sum_{i=1}^{N_{c}} \mathbb{N}(\mathbf{z} \mid \mathbf{m}_{c,i}, \beta_{i}^{-1} \mathbf{V}_{c,i})]$$

$$\left[\mathbb{N}(\mathbf{z} \mid \mathbf{0}, \alpha^{-1} \mathbf{I}) \mathcal{G}(\alpha \mid a_{0}, b_{0}) \prod_{i=1}^{N_{c}} \mathcal{G}(\beta_{i} \mid c_{0}, c_{0}) \right]$$

$$\sum_{i=1}^{N_{c}} \mathbb{E}[\beta_{i}] \mathbf{V}_{c,i}^{-1} + \mathbb{E}[\alpha] \mathbf{I}$$

$$\sum_{i=1}^{N_{c}} \mathbb{E}[\beta_{i}] \mathbf{V}_{c,i}^{-1} \mathbf{m}_{c,i},$$

$$\left(a_{0} + \frac{D}{2}\right) / \left(b_{0} + \frac{1}{2} \operatorname{tr}(\widetilde{\boldsymbol{\mu}} \widetilde{\boldsymbol{\mu}}^{\top} + \widetilde{\boldsymbol{\Sigma}})\right)$$

$$\left(c_{0} + \frac{D}{2}\right) / \left(c_{0} + \frac{1}{2} (\mathbf{m}_{c,i}^{\top} \mathbf{V}_{c,i}^{-1} \mathbf{m}_{c,i} - 2\mathbf{m}_{c,i}^{\top} \mathbf{V}_{c,i}^{-1} \widetilde{\boldsymbol{\mu}} + \operatorname{tr}(\mathbf{V}_{c,i}^{-1} \left(\widetilde{\boldsymbol{\mu}} \widetilde{\boldsymbol{\mu}}^{\top} + \widetilde{\boldsymbol{\Sigma}})))\right)$$
remain fully-differentiable and we

