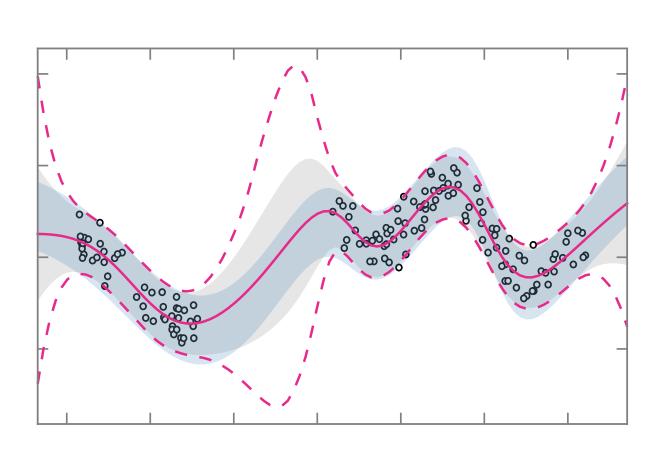
Qualconn Al research

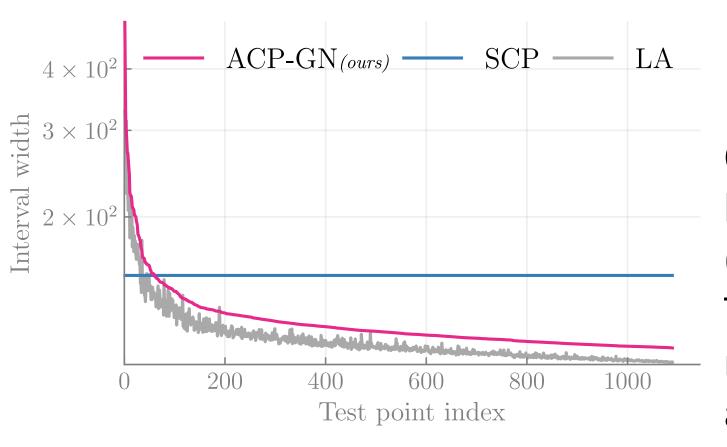
Conformal Prediction (CP) is a popular uncertainty quantification framework that comes in two flavours:

- **Split-CP**: splits the data into training and calibration sets; compute-efficient but data-inefficient.
- Full-CP: retrains the model for each new test point; data-efficient but compute-inefficient.

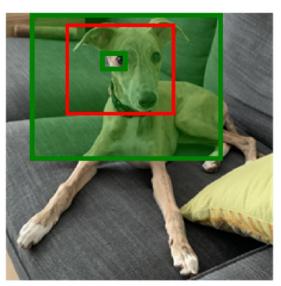
We propose a new conformal regression method that is both compute- and data-efficient. Ours is an approximate full CP method, where the model is trained only once. We use Gauss-Newton influence to perturb the model parameters locally, simulating the effect of retraining. By linearizing the neural network, we exploit a computational shortcut from **conformal least-squares** to avoid the infinite search space over labels. We demonstrate our method on benchmark regression problems and bounding box **localization**, with promising results in limited-data regimes.



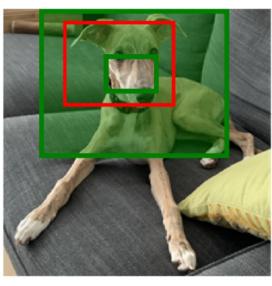
Our approximate full-CP via Gauss-Newton influence (ACP-GN) produces adaptive intervals (bottom)—like Bayes via Laplace approximation (LA)—while satisfying coverage as seen in the high-overlap with split-CP (SCP) close to the data (top).



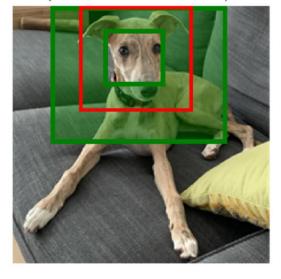
SCP



ACP-GN



ACP-GN (split+refine)



Object localization with bounding box prediction (multi-output regression). Two-sided prediction regions shown in green and NN prediction in red.

Approximating Full Conformal Prediction for Neural Network Regression with Gauss-Newton Influence

Conformal Prediction

Distribution-free UQ in the form of prediction intervals $C(X_{N+1})$ that, for a user-defined miscoverage rate α , satisfies marginal coverage

 $\mathbb{P}(y_{N+1} \in C_{\alpha}(\mathbf{x}_{N+1})) \ge 1 - \alpha$ where \mathbf{x}_{N+1} is the test point, y_{N+1} its (unknown) label, and $\alpha \in [0, 1]$ the user-defined error rate.

How to Construct Prediction Intervals

Given model f_{θ^*} , and training data $\{(x_i, y_i)\}_{i=1}^N$

1. Define a nonconformity score, e.g., residual $R_i = R(x_i, y_i) = |y_i - f_{\theta^*}(x_i)|$

2. Construct prediction intervals as $C_{\alpha}(\mathbf{x}_{N+1}) = \{ y \in \mathcal{Y} \colon \pi(y) \le \lceil (1-\alpha)(N+1) \rceil \}$ where $\pi(y) = \sum_{i=1}^{N+1} \mathbb{1}\{R_i < R(\mathbf{x}_{N+1}, y)\}$ is the rank of $R(\mathbf{x}_{N+1}, y)$ among the other N residuals. If the set of $\{R_i\}_{i=1}^{N+1}$ is exchangeable, the CP guarantee holds.

Algorithm 1: Standard Full-CP.

for each test point \mathbf{x}_{N+1} do for each y in a given grid do optimize $\theta_*^+(y)$ as in Eq. (4) $R_{N+1}(y) = |y - f_{N+1}(\theta_*^+(y))|$ for $i \in \{1, ..., N\}$ do $|R_i(y) = |y_i - f_i(\boldsymbol{\theta}^+_*(y))|$ $\pi(y) = \sum_{i=1}^{N+1} \mathbb{1}\{R_i(y) \le R_{N+1}(y)\}$ if $\pi(y) \leq \lfloor (1-\alpha)(N+1) \rfloor$ then | include y in $C_{\alpha}(\mathbf{x}_{N+1})$

Algorithm 2: ACP-GN (ours).

optimize θ_* as in Eq. (1) for each test point \mathbf{x}_{N+1} do compute a_{N+1}, b_{N+1} as in Eq. (14) for $i \in \{1, ..., N\}$ do compute a_i, b_i as in Eq. (13) if $b_{N+1} - b_i > 0$ then $l_i = u_i = (a_i - a_{N+1})/(b_{N+1} - b_i)$ else $|l_i = -\infty \text{ and } u_i = \infty$ sort $\{l_i\}_{i=1}^N$ and $\{u_i\}_{i=1}^N$ in ascending order $C_{\alpha}(\mathbf{x}_{N+1}) =$ $[l(\lfloor (N+1)(\alpha/2) \rfloor), u(\lceil (N+1)(1-\alpha/2) \rceil)]$

Computational Challenges

- unaddressed.

Validity of ACP-GN

Baseline N

- Linear
- Split-C
- Confor fitting
- Confor regress

Our Metho

- ACP-GN
- ACP-GN see validity
- SCP-GN in-samp influence

1. Search space: One must consider all $y \in$ \mathcal{Y} labels for the test point \mathbf{x}_{N+1} in the construction of $C_{\alpha}(\mathbf{x}_{N+1})$.

2. Ensuring exchangeability: The computation of residuals must be symmetric on all $\{(\mathbf{x}_i, y_i)\}_{i=1}^N \cup (\mathbf{x}_{N+1}, y)$ points.

• Split-CP: $f_{\theta^*}(\cdot)$ trained in another dataset and kept fixed, hence data-inefficient.

Full-CP: $f_{\theta^*}(\cdot)$ is retrained on augmented dataset $\{(\mathbf{x}_i, y_i)\}_{i=1}^N \cup (\mathbf{x}_{N+1}, y)$ where y is a postulated label.

Whilst [Martinez et al., 2023] addressed (2) using influence function, they did not consider regression settings so (1) is left

We address both challenges in our method.

• CP guarantee not assured since retraining step is locally approximated (train + test points not treated symmetrically)

 Bounds on approximation error exist for Newton-step influence

• Proposed variant with linear model "refinement" and train-calibration splits

Our Method (ACP-GN) **Approximate FCP via Gauss-Newton Influence**

1. Solution to infinite search space Linearization of the network about pretrained model parameters $\mathbf{\theta}^*$

 $f_i(\mathbf{\theta}) \approx f_i^{lin}(\mathbf{\theta})$ $= f_i(\boldsymbol{\theta}_*) + \nabla_{\boldsymbol{\theta}} f_i(\boldsymbol{\theta}_*)^T (\boldsymbol{\theta} - \boldsymbol{\theta}_*)$

In a linear model, we only need to consider a few values for postulated y.

2. Solution to retraining

Newton-step influence [Pregibon,

1981] with Gauss-Newton approximation to get an efficient estimate

Approximate scores by piecewise linear function of postulated label

Obtain exact form of prediction set by applying ridge regression confidence machine procedure on $\{(a_i, b_i)\}_{i=1}^{N+1}$

 $\pi(\mathbf{y}) = \sum_{i=1}^{N+1} \mathbb{1}\{\mathbf{y} \in S_i\} \quad S_i = \{\mathbf{y} : |a_i + b_i \mathbf{y}| \le |a_{N+1} + b_{N+1} \mathbf{y}|\}$

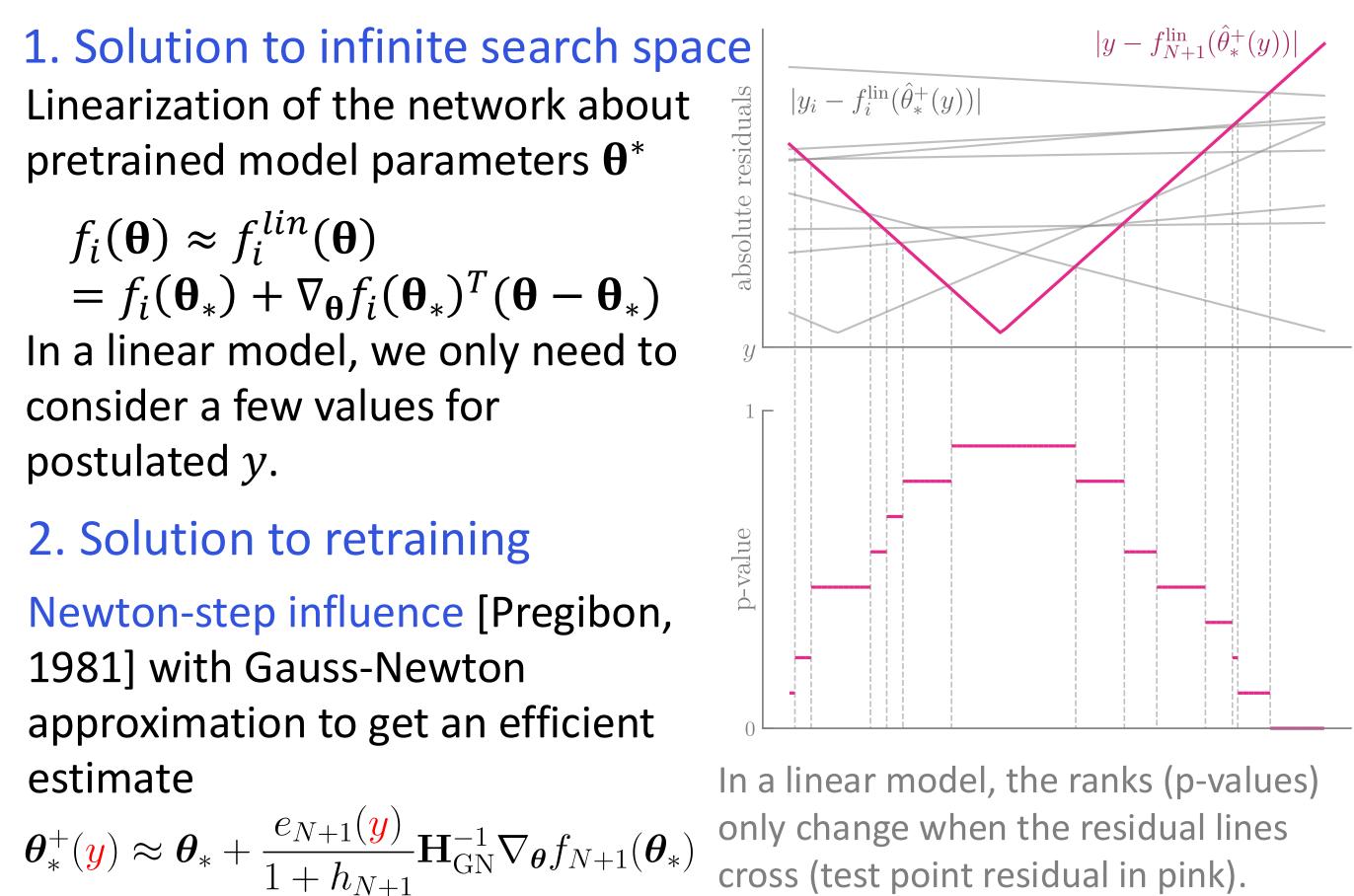
Table: Our ACP-GN almost always gives the tightest intervals in limited-data regimes whilst satisfying the target coverage. On larger datasets (not shown), ACP-GN remains competitive on efficiency compared with other conformal methods but can sometimes miscover. As a remedy, we propose two variants inspired by ACP-GN.

Methods:								
Methous.				Avg. Width			Avg. Coverage	
rized Laplace (LA)			90%	95%	99%	90%	95%	99%
-CP (SCP)		LA	$1.690 {\pm} 0.017$	$2.014{\scriptstyle\pm0.020}$	$2.647 {\pm} 0.027$	88.73 ± 0.61 (\checkmark)	$90.78 {\pm} 0.59$ (X)	$93.89{\pm}0.60~(\red{x})$
	yacht N=308 I=6	SCP	$2.553{\scriptstyle\pm0.093}$	$4.001 {\pm} 0.115$	$10.018 {\pm} 0.361$	89.56 ± 0.66 (\checkmark)	$94.07{\pm}0.39$ (\checkmark)	$99.32{\pm}0.08~(\checkmark)$
ormalized residual g (CRF)		CRF	$2.526{\scriptstyle\pm0.092}$	$3.947 {\pm} 0.115$	$9.674 {\pm} 0.294$	$89.53{\pm}0.64~(\checkmark)$	$94.10{\pm}0.38$ ()	$99.29{\pm}0.10$ (
		CQR	$4.090 {\pm} 0.105$	$5.845 {\pm} 0.187$	$18.650 {\pm} 0.484$	$89.94{\pm}0.42$ ()	$94.42{\pm}0.32$ ()	$99.02{\pm}0.17$ ()
		ACP-GN	$1.594 {\scriptstyle \pm 0.016}$	2.385 ± 0.029	$6.915{\scriptstyle \pm 0.067}$	$87.36{\pm}0.58$ ()	$92.56{\pm}0.68~(\checkmark)$	99.03 ± 0.11 (
		SCP-GN	$2.270{\pm}0.086$	$3.349 {\pm} 0.098$	$7.216 {\scriptstyle \pm 0.254}$	$89.85{\pm}0.51$ ()	$94.91{\pm}0.32$ ()	$99.19{\pm}0.15$ ()
ormalized quantile - ession (CQR) hods:		ACP-GN (split + refine)	$1.993{\scriptstyle\pm0.020}$	$2.954{\pm}0.037$	7.307 ± 0.178	$89.35{\pm}0.62~(\checkmark)$	$94.90{\pm}0.51$ (99.45 ± 0.08 (
	boston <i>N</i> =506 <i>I</i> =13	LA	$9.398{\scriptstyle\pm0.046}$	$\boldsymbol{11.199}{\scriptstyle \pm 0.055}$	$14.718 {\pm} 0.072$	$91.24{\pm}0.31$ ()	$94.34{\pm}0.22$ ()	$97.53 {\pm} 0.11$ (X)
		SCP	$10.635 {\pm} 0.123$	$14.509 {\pm} 0.171$	$36.272 {\pm} 1.847$	$89.56{\pm}0.42$ (\checkmark)	$94.64{\pm}0.32$ ()	$99.11{\pm}0.13~(\checkmark)$
		CRF	$11.932{\pm}0.605$	$16.073 {\pm} 0.862$	40.690 ± 3.333	$90.01{\pm}0.33$ ()	$94.77{\pm}0.22~(\checkmark)$	$99.30{\pm}0.08~(\checkmark)$
		CQR	$11.692 {\pm} 0.129$	15.115 ± 0.213	31.628 ± 1.822	$90.10{\pm}0.33$ ()	$95.12{\pm}0.24$ ($99.07{\pm}0.14~(\checkmark)$
		ACP-GN	$9.182{\scriptstyle\pm0.046}$	$12.111 {\pm} 0.038$	20.512 ± 0.057	$90.64{\pm}0.26~(\checkmark)$	$95.49{\pm}0.16$ ()	$99.11{\pm}0.08~(\checkmark)$
GN		SCP-GN	$10.301 {\pm} 0.089$	$13.418 {\pm} 0.151$	$24.714 {\pm} 0.865$	$89.52{\pm}0.50$ (94.82 ± 0.32 (99.05 ± 0.12 (
		ACP-GN (split + refine)	13.103 ± 0.072	16.729 ± 0.134	$27.561 {\pm} 0.445$	90.12 ± 0.26 (95.41 ± 0.20 (99.27 ± 0.10 (
GN (split+refine)*	energy N=768 I=8		$1.502 {\pm} 0.006$	$1.790 {\pm} 0.007$	$2.353{\pm}0.009$	88.96 ± 0.35 ($92.92{\pm}0.33~(\red{x})$	96.95 ± 0.23 (X)
		SCP	1.942 ± 0.032	2.486 ± 0.046	3.772 ± 0.093	$89.44{\pm}0.28$ (94.80 ± 0.20 (99.18 ± 0.08 (
		CRF	1.923 ± 0.031	$2.454{\pm}0.046$	3.728 ± 0.092	89.39 ± 0.28 (94.78 ± 0.22 (99.14 ± 0.08 (
SN: approximate mple score using		CQR	4.670 ± 0.030	5.139 ± 0.029	6.438 ± 0.120	90.08 ± 0.26 (95.24 ± 0.21 (98.96 ± 0.09 (
		ACP-GN	$1.462{\scriptstyle\pm0.006}$	1.884 ± 0.008	3.076 ± 0.015	88.28 ± 0.33 (93.69 ± 0.33 (98.88 ± 0.11 (
		SCP-GN	1.911 ± 0.029	2.449 ± 0.044	3.609 ± 0.071	89.69 ± 0.29 (\checkmark)	94.79 ± 0.18 (99.21 ± 0.09 ()
		ACP-GN (split + refine)	$1.745{\scriptstyle\pm0.016}$	$2.174 {\pm} 0.021$	$3.300 {\pm} 0.045$	90.54 ± 0.25 (94.96 ± 0.22 (99.18 ± 0.10 (
nco								

Dharmesh Tailor¹, Alvaro H.C. Correia², Eric Nalisnick³, Christos Louizos²

¹University of Amsterdam, ²Qualcomm AI Research, ³Johns Hopkins University

¹d.v.tailor@uva.nl ²{acorreia,clouizos}@qti.qualcomm.com ³nalisnick@jhu.edu



 $R_i(\mathbf{y}) \approx |a_i + b_i \mathbf{y}|$ $R_{N+1}(\mathbf{y}) \approx |a_{N+1} + b_{N+1} \mathbf{y}|$