
Approximating Full Conformal Prediction for Neural 
Network Regression with Gauss-Newton Influence

Conformal Prediction (CP) is a popular uncertainty 
quantification framework that comes in two flavours:

• Split-CP: splits the data into training and calibration 
sets; compute-efficient but data-inefficient.

• Full-CP: retrains the model for each new test point; 
data-efficient but compute-inefficient.

Conformal Prediction
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We propose a new conformal regression method 
that is both compute- and data-efficient. Ours is an 
approximate full CP method, where the model is 
trained only once. We use Gauss-Newton influence 
to perturb the model parameters locally, simulating 
the effect of retraining. By linearizing the neural 
network, we exploit a computational shortcut from 
conformal least-squares to avoid the infinite search 
space over labels. We demonstrate our method on 
benchmark regression problems and bounding box 
localization, with promising results in limited-data 
regimes.

Distribution-free UQ in the form of prediction 
intervals 𝐶 𝑋𝑁+1  that, for a user-defined 
miscoverage rate 𝛼, satisfies marginal coverage

ℙ 𝑦𝑁+1 ∈ 𝐶𝛼 𝐱𝑁+1 ≥ 1 − 𝛼
where 𝐱𝑁+1 is the test point, 𝑦𝑁+1 its 
(unknown) label, and 𝛼 ∈ [0, 1] the user-defined 
error rate.

How to Construct Prediction Intervals
Given model 𝑓𝛉∗, and training data { 𝑥𝑖 , 𝑦𝑖 }𝑖=1

𝑁

1. Define a nonconformity score, e.g., residual
𝑅𝑖 = 𝑅(𝑥𝑖 , 𝑦𝑖) = |𝑦𝑖 − 𝑓𝛉∗(𝑥𝑖)|

2. Construct prediction intervals as
𝐶𝛼 𝐱𝑁+1 = 𝑦 ∈ 𝒴: 𝜋 𝑦 ≤ 1 − 𝛼 𝑁 + 1

where 𝜋 𝑦 = σ𝑖=1
𝑁+1 𝟙{𝑅𝑖 < 𝑅(𝐱𝑁+1, 𝑦)} is the 

rank of 𝑅(𝐱𝑁+1, 𝑦) among the other 𝑁 residuals. 
If the set of {𝑅𝑖}𝑖=1

𝑁+1 is exchangeable, the CP 
guarantee holds.

1. Search space: One must consider all 𝑦 ∈
𝒴 labels for the test point 𝐱𝑁+1 in the 
construction of 𝐶𝛼 𝐱𝑁+1 .

2. Ensuring exchangeability: The 
computation of residuals must be symmetric 
on all 𝐱𝑖 , 𝑦𝑖 𝑖=1

𝑁 ∪ 𝐱𝑁+1, 𝑦  points.

• Split-CP: 𝑓𝛉∗ ⋅  trained in another dataset 
and kept fixed, hence data-inefficient.

• Full-CP: 𝑓𝛉∗ ⋅  is retrained on augmented 
dataset 𝐱𝑖 , 𝑦𝑖 𝑖=1

𝑁 ∪ 𝐱𝑁+1, 𝑦  where 𝑦 
is a postulated label.

Whilst [Martinez et al., 2023] addressed (2) 
using influence function, they did not 
consider regression settings so (1) is left 
unaddressed.

We address both challenges in our method.

Computational Challenges Our Method (ACP-GN)
Approximate FCP via Gauss-Newton Influence

Linearization of the network about 
pretrained model parameters 𝛉∗

𝑓𝑖 𝛉 ≈ 𝑓𝑖
𝑙𝑖𝑛 𝛉

= 𝑓𝑖 𝛉∗ + ∇𝛉𝑓𝑖 𝛉∗
𝑇(𝛉 − 𝛉∗)

In a linear model, we only need to 
consider a few values for 
postulated 𝑦. 

2. Solution to retraining

Newton-step influence [Pregibon, 
1981] with Gauss-Newton 
approximation to get an efficient 
estimate

1. Solution to infinite search space

Baseline Methods:

• Linearized Laplace (LA)

• Split-CP (SCP)

• Conformalized residual 
fitting (CRF) 

• Conformalized quantile 
regression (CQR)

Approximate scores by piecewise linear function of postulated label

Obtain exact form of prediction set by applying ridge regression 
confidence machine procedure on 

Validity of ACP-GN

In a linear model, the ranks (p-values) 
only change when the residual lines 
cross (test point residual in pink).

• CP guarantee not assured since retraining 
step is locally approximated (train + test 
points not treated symmetrically)

• Bounds on approximation error exist for 
Newton-step influence 

• Proposed variant with linear model 
“refinement” and train-calibration splits

Our approximate full-CP via Gauss-
Newton influence (ACP-GN) produces 
adaptive intervals (bottom)—like 
Bayes via Laplace approximation 
(LA)—while satisfying coverage as 
seen in the high-overlap with split-CP 
(SCP) close to the data (top). 

Object localization with 
bounding box prediction 
(multi-output regression). 
Two-sided prediction 
regions shown in green 
and NN prediction in red.

Our Methods:

• ACP-GN

• ACP-GN (split+refine)* 

see validity section

• SCP-GN: approximate 
in-sample score using 
influence

Table: Our ACP-GN almost always gives the tightest intervals in limited-data 
regimes whilst satisfying the target coverage. On larger datasets (not 
shown), ACP-GN remains competitive on efficiency compared with other 
conformal methods but can sometimes miscover. As a remedy, we propose 
two variants inspired by ACP-GN. 
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