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Human-Al Collaboration

Prevent critical misclassification by allocating decisions between the Al
and human.
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Rejection Learning

Q: How to determine which examples should be routed to the classifier or expert?
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Thresholding classifier confidence ™

X Does not consider expert abilities




Rejection Learning

Q: How to determine which examples should be routed to the classifier or expert?
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Rejector Classifier

Learning to Defer: train classifier and rejector jointly

v Considers expert abilities & classifier adapts to expert

X Specialized for a given expert, unable to handle unseen experts




Rejection Learning

Q: How to determine which examples should be ro

Medical
records

Rejector Classifier

Learning to Defer to a Population

v Considers expert abilities & classifier adapts to expert

v Handles unseen experts at test-time (assuming experts
drawn from a population)




Learning to Defer (to a single expert)

expert
/ demonstrations

training data / N
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Mozannar & Sontag. Consistent estimators for learning to defer to an expert. ICML, 2020. 7
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Learning to Defer to a Population
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Learning to Defer to a Population
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representative set of
expert demonstrations /
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Meta-Learning to Defer context se’
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Zaheer et. al. Deep Sets. NeurlPS, 2017.
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Fine-tuning from marginal expert
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Fine-tuning from marginal expert
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Experiment:

Synthetic data
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Experiment: Synthetic data
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“Easy” clusters with
class parity

21



Experiment: Synthetic data

+ :class0 O :class 1

“Easy” clusters with
class parity

“Difficult” cluster:
mix of two classes
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Experiment: Synthetic data
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Experiment: Synthetic data

_ _ L2D-Pop L2D-Pop deferral
T :class0  O:class 1 - classifier region - region
Unskilled expert (1% accuracy) Skilled expert (95% accuracy)

single-L2D
deferral
boundary ™
S

T o
L2D—P0p v Doesn't defer when the expert is v Defers whole of difficult cluster
(adaptive) poor when expert is good

single-L2D X Over-defers as expert does worse
(constant) than random on difficult cluster -



Experiment: Synthetic data
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X Under-defers as classifier only has

single-L2D X Over-defers as expert does worse
(constant) than random on difficult cluster

random chance of being correct

on difficult cluster 28



Experiments: Varying Population Diversity
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Experiments: Varying Population Diversity
CIFAR-20 results
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Experiments: Varying Population Diversity
CIFAR-20 results

—#— single-12D == L2D-Pop (finetune)

87 B 80 _
S
e < 85 > 607
g8 t?
< £ o 40}
83 g ¥
o)
20 | s
51 ' | ' ' | 00 02 04 06 08 10
00 02 04 06 08 10 : - : : - -

Experts Overlap Experts Overlap

31



Experiments: Varying Population Diversity
CIFAR-20 results
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L2D-Pop is superior at deferring as shown by the expert accuracy on
deferred examples (right) leading to a boost in system accuracy (left). The

improvement is greater for the Neural Process implementation.
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Further Experiments and Results

o Further experiments in paper

« Additional benchmark problems: traffic sign detection and
skin lesion diagnosis
e Using OVA surrogate

o Consistency of softmax and OvA surrogate loss functions
for L2D-Pop

o Attentive neural process implementation of L2D-Pop

o Model-agnostic meta-learning (MAML) implementation of
L2D-Pop

33



Learning to Defer to a Population:

A Meta-Learning Approach
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