

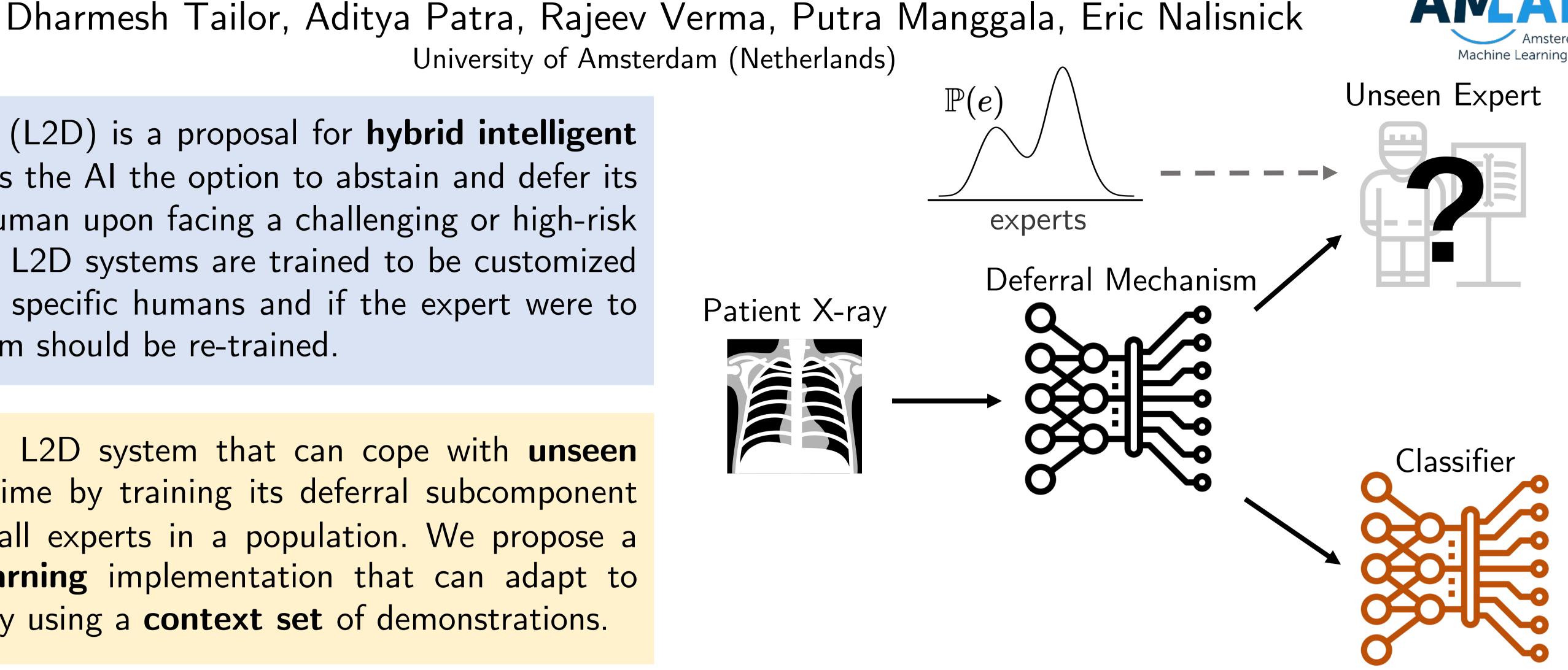
Learning to Defer to a Population: A Meta-Learning Approach

University of Amsterdam (Netherlands) Learning-to-defer (L2D) is a proposal for hybrid intelligent systems that gives the AI the option to abstain and defer its prediction to a human upon facing a challenging or high-risk decision. Existing L2D systems are trained to be customized to one (or more) specific humans and if the expert were to

 $\mathcal{D} = \{\mathbf{x}_n, y_n, m_n\}_{n=1}^N$

We formulate an L2D system that can cope with **unseen** experts at test-time by training its deferral subcomponent

change, the system should be re-trained.



to generalize to all experts in a population. We propose a general meta-learning implementation that can adapt to any expert by only using a **context set** of demonstrations.

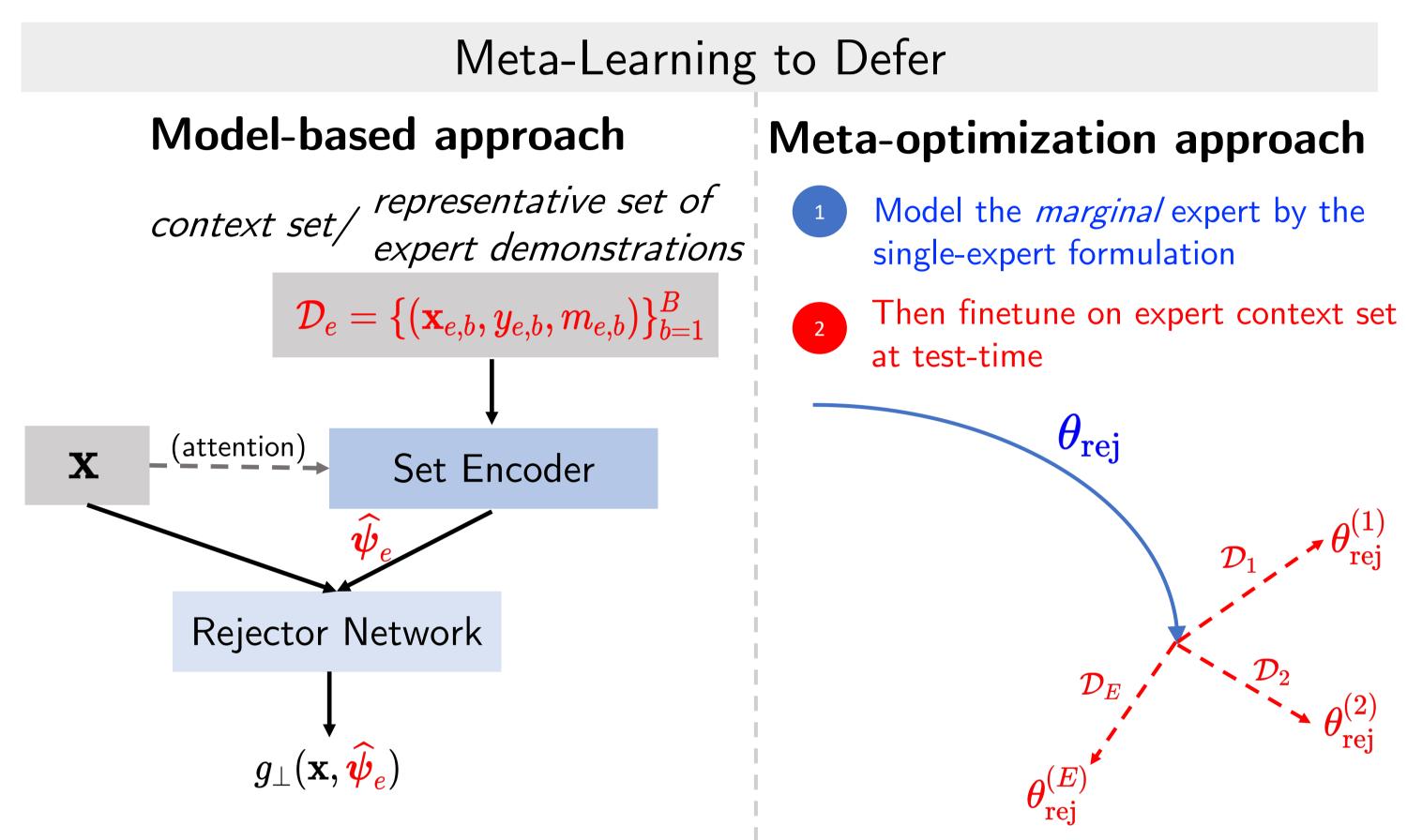
Background: L2D [Mozannar & Sontag, 2020] The learning problem involves jointly training two sub-models: a classifier $h: \mathcal{X} \to \mathcal{Y}$ and a rejector $r: \mathcal{X} \to \{0,1\}$. When r(x) = 0, the classifier makes the decision, and when r(x) = 1 the classifier abstains and defers the decision to the human.

Classifier-rejector (0-1) loss:



They propose a reduction from multiclass expert deferral to cost sensitive learning by unifying the classifier and rejector via an augmented label space that includes the rejection option: $\mathcal{Y}^{\perp} = \mathcal{Y} \cup \{\perp\}$

Then a (consistent) surrogate loss is constructed that extends cross



entropy loss. [Verma & Nalisnick, 2022] also showed one-vs-all parameterization is also a consistent surrogate.

$$\begin{split} &\varphi_{\mathrm{SM}}(g_1, \dots, g_K, g_{\perp}; \boldsymbol{x}, y, m) = -\log\left(\frac{\exp\{g_y(\boldsymbol{x})\}}{\sum_{y' \in \mathcal{Y}^{\perp}} \exp\{g_{y'}(\boldsymbol{x})\}}\right) \\ &\text{Rejection function:} \\ &\mathbb{I}[g_{\perp}(\mathbf{x}) \geq \max_k g_k(\mathbf{x})] \qquad -\mathbb{I}[m = y] \ \log\left(\frac{\exp\{g_{\perp}(\boldsymbol{x})\}}{\sum_{y' \in \mathcal{Y}^{\perp}} \exp\{g_{y'}(\boldsymbol{x})\}}\right) \end{split}$$

Learning to Defer to a Population "L2D-Pop"

We assume a generative process for experts from which experts can be sampled indefinitely and without repetition.

 $\mathfrak{E} \sim \mathbb{P}(\mathfrak{E}), \quad \mathbf{m} \sim \mathbb{P}(\mathbf{m} | \mathbf{x}, \mathbf{y}, \mathfrak{E})$

Formulation resembles single-expert L2D but now rejector also takes as input some representation of the currently-available expert.

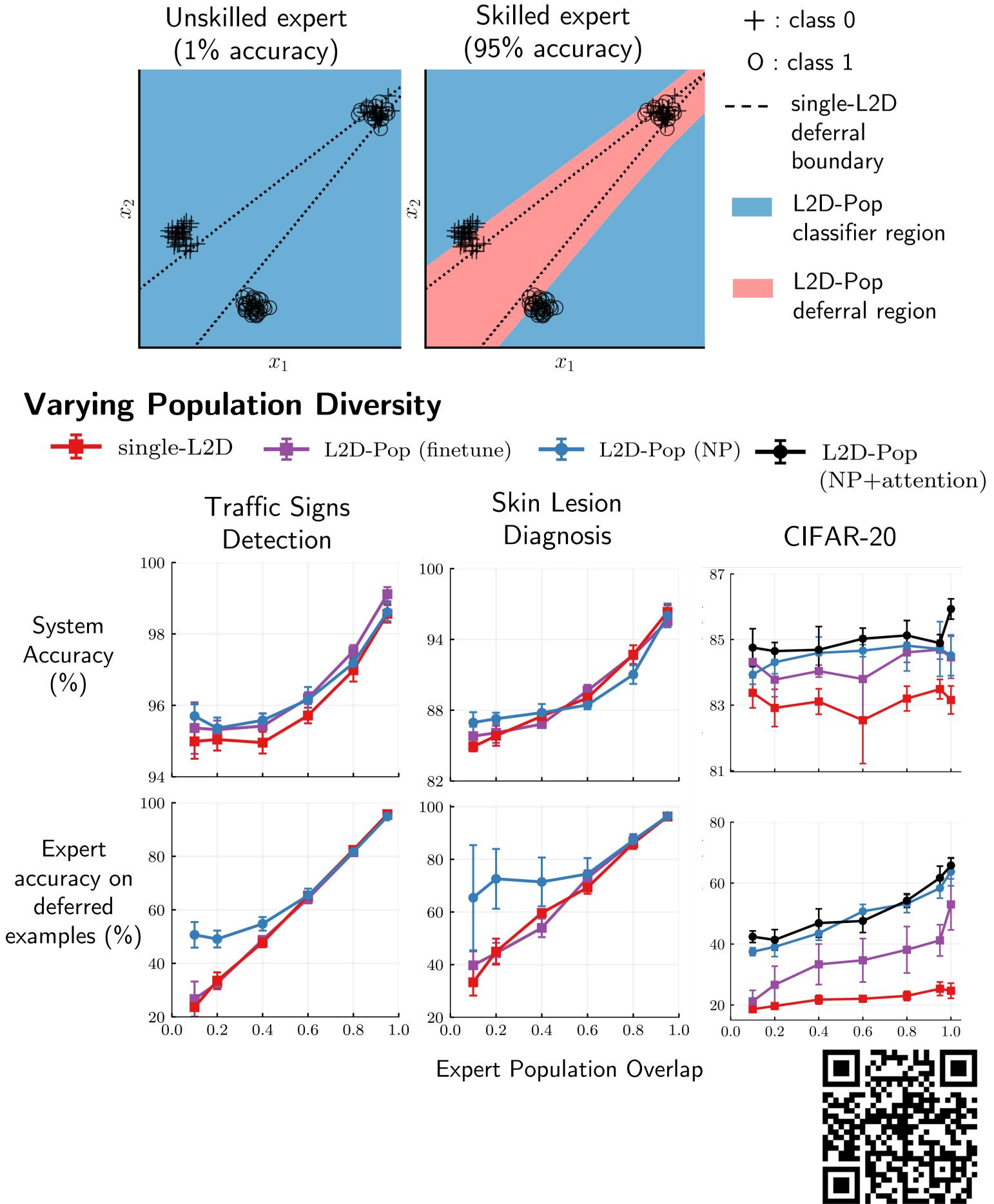
$$r:\mathcal{X} imes\mathfrak{E} o\{0,1\}$$

Surrogate loss:

 $\phi_{\text{SM-Pop}}\left(g_{1},\ldots,g_{K},g_{\perp};\boldsymbol{x},y,\left\{m_{e},\boldsymbol{\psi}_{e}^{\mathfrak{E}}\right\}_{e=1}^{E}\right)=\tilde{\sum}-\log\left(\frac{\exp\{g_{y}(\boldsymbol{x})\}}{\boldsymbol{\sigma}_{\ell}}\right)$

Experiments

Synthetic Data



$$\begin{array}{l} - \mathbb{I}[m_e = y] \ \log\left(\frac{\exp\{g_{\perp}(\boldsymbol{x}, \boldsymbol{\psi}_e^{\mathfrak{E}})\}}{\mathcal{Z}(\boldsymbol{x}, \boldsymbol{\psi}_e^{\mathfrak{E}})}\right) \end{array} \\ \end{array}$$

Applying Single-Expert L2D to L2D-Pop:

We can apply single-expert L2D to the population setting to learn a rejector that models the population's marginal probability of correctness. This requires a reformulation of L2D-Pop surrogate loss where rejector no longer a function of the expert and the sum over experts 'pushes through' to the indicator term.

References

Mozannar and Sontag. Consistent Estimators for Learning to Defer to an Expert. ICML, 2020.

Verma and Nalisnick. Calibrated Learning to Defer with One-vs-All Classifiers. ICML, 2022.