STATS

Learning-to-defer (L2D) is a proposal for hybrid intelligent
systems that gives the Al the option to abstain and defer its
prediction to a human upon facing a challenging or high-risk
decision. Existing L2D systems are trained to be customized
to one (or more) specific humans and if the expert were to
change, the system should be re-trained.

We formulate an L2D system that can cope with unseen
experts at test-time by training its deferral subcomponent
to generalize to all experts in a population. We propose a
general meta-learning implementation that can adapt to
any expert by only using a context set of demonstrations.

Background: L2D [Mozannar & Sontag, 2020]

The learning problem involves jointly training two sub-models: a
classifierh : X — ) and a rejector r: X — {0,1}. When r(x) = 0, the
classifier makes the decision, and when r(x) = 1 the classifier abstains
and defers the decision to the human.
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Classifier-rejector (0-1) loss: expert cost
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They propose a reduction from multiclass expert deferral to cost
sensitive learning by unifying the classifier and rejector via an
augmented label space that includes the rejection option: Y+ =Y U {1}

Then a (consistent) surrogate loss is constructed that extends cross
entropy loss. [Verma & Nalisnick, 2022] also showed one-vs-all
parameterization is also a consistent surrogate.
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Rejection function:
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Learning to Defer to a Population “L2D-Pop”

We assume a generative process for experts from which experts can be
sampled indefinitely and without repetition.
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Formulation resembles single-expert L2D but now rejector also takes
as input some representation of the currently-available expert.

r: X x¢&—{0,1}
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Surrogate loss:
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Applying Single-Expert L2D to L2D-Pop:

We can apply single-expert L2D to the population setting to learn a
rejector that models the population's marginal probability of
correctness. This requires a reformulation of L2D-Pop surrogate loss

where rejector no longer a function of the expert and the sum over
experts 'pushes through' to the indicator term.
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